Discrete Semiconductor Devices

Junction Field N Channel: Apply a negative voltage to the gate to deplete the channel of carriers – Drain to Source Effect Transistor Voltage must be positive – when $v_{GS} = V_P$ then the channel is pinched off – no current flows (JFET) <u>P Channel</u>: Apply a positive voltage to the gate to deplete the channel of carriers – Drain to Source N Channel: Voltage must be negative – when $v_{GS} = V_P$ then the channel is pinched off – no current flows Equations for N channel (for P channel: $V_P \ge 0$, $v_{DS} \le 0$, $\lambda = \frac{1}{V_{DS}} \le 0$) G P Channel: Cutoff Region: $i_{D} = 0$ $v_{GS} \leq V_P$, Triode Region: $V_P \le v_{GS} \le 0 \quad \& \quad v_{DS} \le v_{GS} - V_P$ $i_D = I_{DSS} \left[2 \left(1 - \frac{v_{GS}}{V_P} \right) \left(\frac{v_{DS}}{-V_P} \right) - \left(\frac{v_{DS}}{V_P} \right)^2 \right]$ Saturation Region $V_P \le v_{GS} \le 0 \quad \& \quad v_{DS} \ge v_{GS} - V_P$ $i_D = I_{DSS} \left(1 - \frac{v_{GS}}{V} \right)^2 \left(1 + \lambda v_{DS} \right)$ $v_{GS} = \text{Gate to Source Voltage}(V)$ v_{DS} = Drain to Source Voltage (V) V_{P} = Pinchoff Voltage (V) Where: $i_{D} = Drain Current (A)$ I_{DSS} = Drain to source current with gate & source shorted together (A) $\lambda = \frac{1}{V_{\star}}, \quad V_A = \text{Early Voltage}(V)$ Small Signal $g_m = \left(\frac{2I_{DSS}}{|V_p|}\right) \left(1 - \frac{V_{GS}}{|V_p|}\right) \quad \text{or} \quad g_m = \left(\frac{2I_{DSS}}{|V_p|}\right) \sqrt{\frac{I_D}{I_{DSS}}}$ $r_o = \frac{|V_A|}{I_D}$ ÐD g_m = Transconductance of JFET (A.V⁻¹) $r_o =$ Output resistance (Ω) $V_{GS} = DC$ bias gate to source voltage (V) $I_{D} = DC$ bias drain current (A) Ф

Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

©Evan Hunter - http://electronics.ozhiker.com

Diodes

